Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks.
نویسندگان
چکیده
The myopathy associated with vitamin D deficiency has not been well characterized, and it is not known if weakness is a result of a specific effect of vitamin D deficiency on skeletal muscle. Chicks were raised from hatching on a vitamin D-deficient diet, and by 3 wk of age were hypocalcemic and appeared weak. Tension generated by triceps surae during repetitive stimulation of posterior tibial nerve was significantly less than that developed by chicks given vitamin D(3) supplements (309 g tension/g wet weight of triceps surae, SD 60, for vitamin D-deficient chicks; 470, SD 77, for vitamin D(3)-treated chicks, P < 0.01). Histochemical and electron microscopic examination of skeletal muscles of these chicks showed no abnormalities, and there were no electrophysiologic evidences of motor nerve or neuromuscular junction dysfunction. The concentration of ATP in skeletal muscle of the vitamin D-deficient chicks (5.75 mumol/g wet weight, SD 0.17) was not significantly different from that in vitamin D-treated chicks (5.60, SD 0.50). There was no correlation between strength and serum calcium, serum inorganic phosphate, or skeletal muscle inorganic phosphate. Relaxation of tension after tetanic stimulation was slowed in the vitamin D-deficient chicks (20.6 ms, SD 1.7, vs. 15.4, SD 1.3, in vitamin D-treated chicks and 15.3, SD 1.0, in normal control chicks), and in vitro (45)Ca(++) transport by sarcoplasmic reticulum from the vitamin D-deficient chicks was reduced. Calcium content of mitochondria prepared from leg muscles of vitamin D-deficient chicks (24 nmol/mg mitochondrial protein, SD 6) was considerably lower than that of mitochondria from normal control chicks (45, SD 8) or from chicks treated with vitamin D for 2 wk or more (66-100, depending upon level and duration of therapy). Treatment of the vitamin D-deficient chicks from hatching with sufficient dietary calcium to produce hypercalcemia did not significantly raise skeletal muscle mitochondrial calcium content (31 nmol/mg mitochondrial protein, SD 7) and did not prevent weakness. These studies demonstrate objective weakness as a result of myopathy in vitamin D-deficient chicks, and provide evidence that vitamin D deficiency has effects on skeletal muscle calcium metabolism not secondary to altered plasma concentrations of calcium and phosphate.
منابع مشابه
Vitamin D deficiency-related muscle atrophy – an indirect effect of low vitamin D levels?
Background Vitamin D deficiency has been associated with a decrease in muscle force and fibre type II atrophy. Unknown are the effects of vitamin D deficiency on the skeletal muscle contractile properties. Methods To investigate the effects of vitamin D deficiency on the contractile properties and expression factors of the medial gastrocnemius muscle, female 3 week old Wistar rats were provided...
متن کاملEffects of Vitamin D in Neonates and Young Infants
Vitamin D is important for the development, growth, and mineralization of the skeletal in neonates and children. Vitamin D is essential for intestinal absorption of calcium. Vitamin D is metabolized to 25-hydroxyvitamin D and then to 1,25-dihydroxyvitamin D. Pregnant women in developed countries often have insufficient serum concentrations of 25-hydroxyvitamin D and a supplementation of vitamin...
متن کاملThe roles of vitamin D in skeletal muscle: form, function, and metabolism.
Beyond its established role in bone and mineral homeostasis, there is emerging evidence that vitamin D exerts a range of effects in skeletal muscle. Reports of profound muscle weakness and changes in the muscle morphology of adults with vitamin D deficiency have long been described. These reports have been supplemented by numerous trials assessing the impact of vitamin D on muscle strength and ...
متن کاملThe role of vitamin D in skeletal and cardiac muscle function
Myopathy is a feature of many inflammatory syndromes. Chronic inflammation has been linked to pathophysiological mechanisms which implicate 1,25 dihydroxyvitamin D3 (1,25-(OH)2D3)-mediated signaling pathways with emerging evidence supporting a role for the vitamin D receptor (VDR) in contractile and metabolic function of both skeletal and cardiac muscle. Altered VDR expression in skeletal and c...
متن کاملVitamin D Deficiency, hypocalcemia, and increased skeletal muscle degradation in rats.
The myopathy associated with vitamin D deficiency was examined in vitamin D-deficient and vitamin D-supplemented rats. When compared with either vitamin D-supplemented ad lib. or pair-fed rats, weight gain and muscle mass were decreased in vitamin D-deficient hypocalcemic animals. With the exception of a modest decrease in muscle creatine phosphate levels, muscle composition was unchanged by vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 64 5 شماره
صفحات -
تاریخ انتشار 1979